
2630 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Real-Time and Adaptive Reservoir Computing With
Application to Profile Prediction in Fusion Plasma

Azarakhsh Jalalvand , Member, IEEE, Joseph Abbate, Rory Conlin ,

Geert Verdoolaege , Member, IEEE, and Egemen Kolemen

Abstract— Nuclear fusion is a promising alternative to address
the problem of sustainable energy production. The tokamak
is an approach to fusion based on magnetic plasma confine-
ment, constituting a complex physical system with many control
challenges. We study the characteristics and optimization of
reservoir computing (RC) for real-time and adaptive prediction
of plasma profiles in the DIII-D tokamak. Our experiments
demonstrate that RC achieves comparable results to state-of-
the-art (deep) convolutional neural networks (CNNs) and long
short-term memory (LSTM) models, with a significantly easier
and faster training procedure. This efficient approach allows for
fast and frequent adaptation of the model to new situations, such
as changing plasma conditions or different fusion devices.

Index Terms— Adaptive learning, condition monitoring,
nuclear fusion, reservoir computing (RC), tokamak plasma.

I. INTRODUCTION

THE research on controlled nuclear fusion aims at the
development of a source of power that is clean, safe,

and as good as inexhaustible. Among the various approaches,
the tokamak configuration, based on magnetic confinement
of a hot hydrogen isotope plasma, is currently the most
advanced one. Plasma performance is often quantified using
the triple product nT τE , where n is the density of particles,
T is their temperature, and τE is the energy confinement
time, a measure of how long it takes energetic particles to

Manuscript received September 14, 2020; revised February 11, 2021;
accepted May 18, 2021. Date of publication June 11, 2021; date of cur-
rent version June 2, 2022. This work was supported in part by the U.S.
Department of Energy, Office of Science, Office of Fusion Energy Sciences,
DOE ARPA-E, using the DIII-D National Fusion Facility, a DOE Office
of Science user facility, under Award DC-AC02-09CH11466, Award DE-
SC0015480, Award DE-SC0015878, Award DE-FC02-04ER54698, Award
DE-AR0001166, Award DE- SC0021275, and under Field Work Proposal
1903. The work of Azarakhsh Jalalvand was supported by the Ghent Uni-
versity through the Special Research Award under Award BOF19/PDO/134.
(Corresponding author: Azarakhsh Jalalvand.)

Azarakhsh Jalalvand is with the Department of Electronics and Informa-
tion Systems, Ghent University, 9052 Ghent, Belgium, and also with the
Department of Mechanical and Aerospace Engineering, Princeton University,
Princeton, NJ 08544 USA (e-mail: azarakhsh.jalalvand@ugent.be).

Joseph Abbate is with the Department of Astrophysical Sciences, Princeton
University, Princeton, NJ 08544 USA, and also with the Princeton Plasma
Physics Laboratory, Princeton, NJ 08543 USA.

Rory Conlin and Egemen Kolemen are with the Department of Mechanical
and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA,
and also with the Princeton Plasma Physics Laboratory, Princeton,
NJ 08543 USA.

Geert Verdoolaege is with the Department of Applied Physics, Ghent
University, 9000 Ghent, Belgium.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3085504.

Digital Object Identifier 10.1109/TNNLS.2021.3085504

leave the plasma. To achieve ignition, the triple product must
exceed 3 × 1021 keV s/m3 (measuring temperatures in eV
is standard in plasma physics, with 1 eV ∼ 11 606 K).
In simpler terms, there must be enough particles (n) at
high enough temperature (T) for a long enough time (τE)
for enough particles to undergo fusion and make reaction
self-sustaining. Although the goal is generally to increase
temperature and density, steep gradients can drive instabili-
ties that reduce confinement, and there are upper limits on
how hot and dense the plasma can be before the magnetic
fields can no longer contain it. Therefore, understanding and
control of the physical mechanisms governing the transport
of heat and particles through the plasma are essential to
optimize the plasma confinement, hence fusion performance,
while ensuring machine operation within the design limits.
In turn, this requires careful monitoring and control of the
plasma properties, such as density and temperature throughout
the plasma volume. In particular, model-based prediction of
plasma properties, based on measurements of the current and
past state of the plasma, has the potential to greatly facilitate
maintaining the plasma in the desired state, using a variety of
actuators.

Physics models are currently not always sufficiently accu-
rate or computationally too demanding to be used for plasma
control, particularly when certain plasma instabilities arise,
which may eventually lead to a complete loss of plasma
confinement in a disruption [1], [2]. In this regard, data-driven
techniques are being studied to simulate the evolution of
important plasma properties and predict the plasma state on
a very short time scale. In particular, artificial neural net-
works (ANNs) have been extensively studied for plasma evo-
lution monitoring tasks. Researchers at TEXT [3], DIII-D [4],
ASDEX [5], and JET [6], [7] have presented proof-of-concept
ANN-based models to monitor the plasma state and detect
disruptions by using diagnostic data available in real time
as input signals. Recently, a disruption predictor combining
recurrent and convolutional neural networks (CNNs) has been
developed by Kates-Harbeck et al. [8]. The neural network
has also been applied to analyze the tearing mode (TM) on
JET [9]. Other machine learning methods, such as support
vector machines [10], [11], discriminant analysis [12] and
ensemble methods [13]–[15] have been studied as well with a
view to disruption prediction.

The advanced machine-learning models that have been
used so far for plasma state prediction are usually developed
by training, optimizing, and testing the model with large

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4212-3247
https://orcid.org/0000-0001-8739-1793
https://orcid.org/0000-0001-8366-2111
https://orcid.org/0000-0002-2640-4527

JALALVAND et al.: REAL-TIME AND ADAPTIVE RC WITH APPLICATION TO PROFILE PREDICTION IN FUSION PLASMA 2631

datasets. This is an expensive process for complex models,
such as deep neural networks [8], which requires highly skilled
individuals, large datasets, huge computational resources and
capabilities, and a lot of time. Unfortunately, current neural
network models are not adaptable to incremental changes in
the environmental conditions, despite the intense investment
of time and resources. For instance, it has proven difficult to
generalize the performance of disruption predictors between
operational conditions or from one fusion device to another.
Without adaptability, the retraining of models must be per-
formed by submitting new training datasets, again requiring a
huge investment of resources and time.

In [16], an adaptive ensemble of classification and regres-
sion trees have been proposed for disruption prediction in
plasma. The adaptation strategy is based on monitoring the
performance of the model after each run of tokamak and updat-
ing the training set once a classification error has occurred or
an alarm has been triggered. This idea was later expanded to
prevention and mitigation of disruption as well as transferring
and adapting the model from one machine to another [17]. In
another study, Humbird et al. [18] trained a five-layer fully
connected neural network on simulated data and transferred
the learning from simulation to experimental data by freezing
the first three layers and retraining the last two. The results
show that this is an effective, but slow, approach to calibrate
the neural network.

To address the challenges of neural network training for
plasma state prediction, in this study we employ adaptive
reservoir computing (RC) [19]–[22]. To our knowledge, this is
the first application of RC in the context of fusion research. RC
has been shown to be very effective for a variety of tasks, e.g.,
in the analysis of high-dimensional data and time-evolving
chaotic systems [23]–[26]. We demonstrate the performance
of an RC-based model for space-resolved prediction of density
and temperature in the DIII-D tokamak, given information
on the present plasma state and future information on the
actuator settings. We provide a perceptual understanding about
the impact of the hyperparameters on the memory concept of
the reservoir. This is followed by a detailed description on
how to develop and tune the network to achieve the optimal
performance.

Furthermore, we investigate the potential of a RC-based
models in real-time adaptation to recent input. Adapting RC
has already been shown to be fast and effective in noise-robust
speech processing [27] and fluid turbulence analysis [28].
This is an important asset of this type of neural networks
that discriminates them from alternative complex data-driven
models, such as deep neural networks.

The rest of this article is organized as follows: Section II
gives an overview of RC. In Section III, we explore the main
hyper-parameters of the RC and study their impact on the
reservoir states. Section IV describes the collected dataset
followed by the experimental results in SectionV. The article
ends with a brief conclusion and ideas for future work.

II. RESERVOIR COMPUTING (RC)

RC is a neural network with two particular computational
layers: 1) a hidden layer of recurrently interconnected non-
linear neurons, driven by inputs and by delayed feedback

Fig. 1. Basic RC consists of a reservoir and a readout layer. The reservoir
is composed of interconnected nonlinear neurons with fixed random weights.
The readout layer consists of linear neurons with trained weights.

Fig. 2. Visualization of (1) describing leaky integrator neuron i .

of its activation and 2) an output layer of linear neurons,
driven by the hidden neuron activation (Fig. 1). A fundamental
point is that the input weights and the recurrent connection
weights are initialized randomly, and only the output weights
are optimized (trained) for solving the targeted problem.

The recurrently interconnected hidden neurons constitute
a reservoir (a pool) of computational neurons. The reservoir
can be viewed as a nonlinear dynamical system that analyzes
a stream of inputs, e.g., time-series data. The outputs are
usually called readouts [29], so as to differentiate them
unambiguously from the reservoir outputs. If Ut , Rt , and Yt

represent the reservoir inputs, the reservoir outputs and the
readouts at time t , the RC equations can be written as follows:

Rt = (1− λ)Rt−1

+ λ fres(WinUt +Wrec Rt−1 +Wb) (1)

Yt = Wout Rt (2)

with λ being a leaking rate between 0 and 1, with fres being
the nonlinear activation function of the reservoir neurons (we
used hyperbolic tangent in this work) and with Win, Wrec,
Wb, and Wout being the input, recurrent, bias, and output
weight matrices, respectively. Equation (1) and Fig. 2 represent
a leaky integration of the neuron activation.

The weights of the hidden neurons are fixed by means of a
random process that is characterized by four parameters [30]:
1) αU , the maximal absolute eigenvalue of the input weight
matrix Win; 2) ρ, also known as spectral radius, the maximal
absolute eigenvalue of the recurrent weight matrix Wrec;
(3) K in, the number of inputs driving each reservoir neuron;
and 4) K rec, the number of delayed reservoir outputs driving
each reservoir neuron. The first two parameters control the
relative importance of the inputs and the delayed reservoir
outputs in the reservoir neuron activation. The latter two

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

2632 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Fig. 3. Example of applying a 2-node reservoir to a 1-D dataset. Top left is the
data feature space, and the top right shows the outcome of linear regression to
classify the samples. Bottom left is the result of feeding the above samples to
the reservoir, and bottom right shows the optimal regression on this new space.
The black dashed line shows the hyperplane determined by the regression
model and the miss-classified samples are marked with red.

control the sparsity of the input and the recurrent weight
matrices. Wb is also initialized randomly and rescaled by αb

as a hyperparameter.

A. How Does RC Work?

In essence, the reservoir can be seen as a random fixed pro-
jector that nonlinearly projects the input sample, represented
by an input feature vector of size N in , to a (usually much)
higher dimensional feature space of size N res. Assuming that
the complexity (e.g., the nonlinearity) of the given task and
data is an obstacle to easily (e.g., linearly) separate the data
samples, the hypothesis is that the reservoir projects the
inputs (U) to a new feature space R and facilitates the linear
separation of the data samples. In Fig. 3, we provide a simple
example, which can help to understand how this projection
works. It shows a small dataset consisting of ten 1-D samples
randomly labeled as two classes and the task is to train a linear
classifier based on the available data. Obviously, there is no
linear model to perfectly separate these two classes and the
best model scores 6 out of 10.

By initializing a RC model of size 2, each of the 1-D
samples is projected to a new 2-D feature space. Consequently,
we are able to train a linear model on this space, which can
better classify the data and achieve a score of 8. Although
a valid concern would be the sensitivity of the performance
to the random initialization of reservoir weights, studies show
that the performance of the model is quite stable for suffi-
ciently large reservoirs [31].

B. Training

The aim of the training is to find the output weights that
minimize the mean squared difference between the readouts
Yt and their desired values Dt across Ntr available training
examples. Introducing the matrices R and D with columns Rt

and Dt , respectively, the output weights are the solution of a

regularized Tikhonov regression problem [32]

Wout = arg min
Ŵout

(
1

Ntr

∣∣∣
∣∣∣ŴoutR − D

∣∣∣
∣∣∣2 + �

∣∣∣
∣∣∣Ŵout

∣∣∣
∣∣∣2

)
(3)

with � being the regularization parameter, which is intended to
prevent overfitting to the training data. The solution is obtained
in a closed-form [33] as

Wout = (RᵀR + � I)−1(Rᵀ D) (4)

with I representing the identity matrix and A−1 the
Moore-Penrose pseudo inverse of A [34]. Algorithm 1 presents
the steps of training a RC.

Algorithm 1 Training RC

1: procedure INITIALIZE Win , Wrec , Wb

2: procedure EXECUTE THE RC ON THE SAMPLES

3: R← zero array of shape (Nres + 1)× (Nres + 1)
4: D← zero array of shape (Nres + 1)× Nout

5: N tr ← 0
6: for each training shot of length T do
7: U ← feature array of shape Nin × T
8: D← target array of shape Nout × T
9: R← zero array of shape Nres × T

10: R0 ← zero array of shape Nres × 1
11: for t: 1 to T do
12: Rt ← tanh(Win ×Ut +Wrec × Rt +Wb)
13: Rt ← (1− λ)Rt−1 + λRt

14: add a row of 1s to R for bias
15: N tr ← N tr + T
16: R←R+ Rᵀ × R
17: D← D + Rᵀ × D
18: procedure TRAIN THE OUTPUT WEIGHTS

19: Wout = (R+ � I)−1(D)

C. Adaptation

Most predictive models are developed under the assumption
that training and testing data are generated from a station-
ary process. However, this assumption often does not hold
true in practice. For instance, changes in either the process
configuration or machine calibration are the usual sources
of concept drift in the data, which directly influences the
performance of the data-driven prediction approaches [35].
In fusion devices, such drifts can arise when transitioning to a
new regime of plasma operation, or when testing a model on
a different machine. As a result, there is a need to retrain or
adapt the deployed models to the changes of the environment.
Although retraining is a very complex and expensive process
in many state-of-the-art models such as deep neural networks,
RC’s easy one-shot training process makes it a very appealing
alternative.

Because the readout nodes are linear, the linear transforma-
tion of readouts is equivalent to a linear transformation of the
readout node parameters (weights). Learning the latter trans-
formation can be formulated as training the readouts with the
original training data supplemented with the adaptation data.

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

JALALVAND et al.: REAL-TIME AND ADAPTIVE RC WITH APPLICATION TO PROFILE PREDICTION IN FUSION PLASMA 2633

Based on Algorithm 1, instead of storing the whole training
data we only need to store the matrices R (a symmetric
matrix) and D along with the scalar N tr after the training.
By collecting RA, DA and N tr

A from the new (adaptation)
data, the adapted readout weights can be obtained as

Wout = ((1− γ)R+ γRA + � I)−1((1− γ)D + γDA)

(5)

where γ is a factor that controls how much the adaptation data
contribute to these weights. In that regard γ = 1 is a special
case in which the impact of the old samples are discarded when
they become obsolete and therefore misleading. The cost of
adaptation is discussed in Section V.

D. Parallel Training

Algorithm 1 suggests that the main steps of training RC are
1) initializing the input, recurrent and bias weight matrices;
2) accumulating R and D for the samples in the training set;
and 3) applying ridge regression on the final accumulated R
and D. Assuming that executing the reservoir (lines 10–17 of
the algorithm) for each training sample begins from the initial
state of R0 = 0, we can conclude that calculating R and D
for each sample (each discharge in this dataset) is independent
of the others. Therefore, it is possible to split the training
dataset into batches of samples, execute each batch in a sep-
arate processor, and accumulate the aforementioned matrices
afterward to calculate the output weights (see Algorithm 2).

Algorithm 2 Parallel Training of RC

1: Initialize Win , Wrec, Wb

2: Split the dataset to G arbitrary groups and distribute them
to the available processors

3: for each training group g do
4: Calculate Rg , Dg and N tr

g (See Algorithm 1 proce-
dure 2)

5: procedure TRAIN THE OUTPUT WEIGHTS

6: N tr =∑N tr
g

7: R =∑Rg

8: D =∑ Dg

9: Wout = (R+ � I)−1(D)

III. HYPERPARAMETERS OF RC

In this section, we analyze the impact of the important
hyperparameters, namely the input scaling αU and the spec-
tral radius ρ along with the density of the Win and Wrec,
the leakage λ, and the bias scaling αb. Although there have
been many studies on instructions for optimizing these hyper-
parameters for a specific use-case and available training data
[22], [36]–[40], the aim of this section is to propose a
training-free analysis that would provide a perceptual under-
standing of reservoir behavior independent of the use-case and
quality of the training data. To that end, we feed a time-shifted
unit impulse into a small RC and observe the absolute values
of the impulse responses inside the reservoir. The impulse
input is a multivariate time-series input U with an arbitrary

Fig. 4. Impulse response of a 100-node reservoir with (1) sparse input and
recurrent connection matrices, (2) sparse input and full recurrent connection
matrices, (3) full input and sparse recurrent connection matrices, and (4) full
input and recurrent connection matrices.

input dimension of N in = 10 and the duration of T = 100. The
impulse occurs at t = 5, hence, the input Ut is a zero vector in
all time steps except for time t = 5, where U5 = [1, 1, . . . , 1].

A. Density of the Input and Recurrent Connections

Studies on different tasks show that the sparsity of the
input and recurrent weights does not significantly influence
the performance as long as the relative scales, αU and ρ, are
adjusted correctly [41], [42]. Nevertheless, it is of interest to
verify whether the sparsity of the input and recurrent weights
have noticeable impact on the reservoir activation. Fig. 4
shows the impulse response of a 100-node reservoir with
combinations of sparse and dense input and recurrent weights.
Although there is no clear impact on the shape and length
of the activation (i.e., dynamical memory of reservoir), some
arguments in favor of sparse connections are as follows:

1) In a fully connected network, all the nodes are triggered
with all the input features and the difference in their
activation only relies on the random connection weights
given to each feature. On the contrary, in a sparsely con-
nected network the activation of each node is different
from the other not only because of the random weights,
but also because each node is triggered by a different
set of input features. This increases the diversity of
information combination and, similar to dropout in deep
learning, reduces the adverse effects of missing or noisy
data, which could lead to more robustness of the model.

2) Employing sparse connections has a significant impact
on the hardware efficiency of the model, especially when
dealing with multidimensional inputs and/or when very
large reservoirs are required. For instance, Wrec of a
16 000-node fully connected reservoir occupies around
2 GB of memory, whereas such a matrix for the same
reservoir with only ten connections per node would
occupy less than 2 MB.

3) Moreover, if we define the sparsity of input connections
by the number of input connections to each reservoir
node (K in) instead of a total random selection, the total
number of nonzero elements in Win will be N res ×
K in. Therefore, the size of Win, and consequently the
required computational resources, will be independent
of the dimension of input feature vector.

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

2634 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Fig. 5. Impulse response of a 100-node reservoir (1) with simple neurons and
without recurrent connections, (2) with leaky integrated neurons and without
recurrent connections, (3) with simple neurons and with recurrent connec-
tions, and (4) with leaky integrated neurons and with recurrent connections.
(5) and (6) show the unstable regime of the reservoir when ρ > 1.

B. Memory Concept of RC

In a second experiment, we studied the impact of leak-
ing rate (λ) and spectral radius (ρ) as the two parameters
to control the memory of reservoirs. In theory, the leaky
integration neurons (LINs) and the recurrent connections of
the reservoir enable modeling of the short-term dynamics of
motion. To visualize these dynamics, Fig. 5 shows the impulse
response of a 100-node reservoir, with and without recurrent
connections (controlled with ρ) and with and without LINs
(controlled with λ). Obviously, the system without LIN and
recurrent connections has no means to remember the past,
hence the response is also an impulse. Such a model is
known as conventional extreme learning machine (ELM) [43].
By replacing simple neurons with LINs, it is possible to pro-
vide a linear fading memory: the smaller the λ, the longer the
effect of the past information but with weaker first response.
In practice, this means that the state of each neuron will change
faster or slower depending on the leakage λ. A reservoir with
simple neurons and with recurrent connections benefits from a
complex short-term dynamics. This information also fades out
through time (if ρ < 1), but it is difficult to interpret, because
of the nonlinearity of the neurons and random initialization of
the recurrent weights. The reservoir with LINs and recurrent
connections benefits from both of these memory concepts, and
the combined information lasts longer than each individual
ones.

Fig. 5 also shows the impulse responses for ρ = 1.05.
We can see that the reservoir states are decaying very slowly,
and they are oscillating with a resonance frequency. For many
tasks it is necessary to keep ρ < 1, which preserves the echo
state property of reservoir, stating that with time, the reservoir
should forget the initial state it was in [29]. However, in some
cases, the spectral radius can be larger than 1 [44].

Fig. 6. Impulse response of a 100-node reservoir (1) with recurrent
connections and without bias and (2) with recurrent connections and with
bias. Bias helps to reach more nonlinear areas of the activation function by
changing the stable state of the reservoir nodes.

C. Bias Scaling

Another hyperparameter to be studied is the bias scaling
αb. The stable state of all reservoir neurons without bias is
the center value of the nonlinear activation function (tanh),
i.e., 0. The bias scaling can help to reach more nonlinear areas
of the activation function by changing the stable state of the
reservoir nodes. This is particularly useful in the tasks when
the nonlinearity of the model plays an important role on the
performance.

In Fig. 6, we present the impact of bias in a reservoir
without leaky integration (λ = 1) but with a spectral radius
of ρ = 0.8. The absolute value of the stable states of the
reservoir neurons is approximately distributed in the activation
range and each neuron has its own stable state. When new
information from the input is passed to the reservoir neurons,
this is the excitation point.

IV. DATASET

In this work, data were collected from the DIII-D tokamak,
from experimental campaigns covering the years 2010–2018.
The MDSplus data management software was used to load the
data [45], alongside the OMFIT software framework for data
preprocessing [46]. A new module has been developed for this
task and is publicly available within OMFIT. A tokamak is an
inherently pulsed device, with the device settings and plasma
conditions determined by the experimental program. A plasma
pulse (discharge or “shot”) broadly consists of a ramping-up
phase of the plasma current, a current flat-top phase, and a
current ramp-down. In this work, only data from the flat-top
phase were used. DIII-D shots have a typical duration of the
order of seconds.

All signals were resampled to a common 50 ms time base
by averaging or nearest-neighbor interpolation. Our model
considers data in 50 ms nonoverlapping frames, a spacing large
enough to smooth over most irrelevant signal variations, like
modulations of the injected power. The following three types
of data were considered at each time step:

1) Plasma profiles: spatial distribution of a given quan-
tity in the plasma, such as density and temperature.
Although in general these would be functions of three
real space coordinates, because of the toroidal symmetry,
the plasma is homogeneous in the toroidal and poloidal
directions. We only consider radial profiles, from the
center of the vacuum vessel up to the plasma boundary.

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

JALALVAND et al.: REAL-TIME AND ADAPTIVE RC WITH APPLICATION TO PROFILE PREDICTION IN FUSION PLASMA 2635

TABLE I

SIGNALS COLLECTED FROM DIII-D TOKAMAK AND USED
IN THE PROFILE PREDICTION NEURAL NETWORK

Fig. 7. Measured evolution of profiles of electron density (ne), electron tem-
perature (Te), toroidal rotation (�), field line pitch (ι), and total pressure (P)
in DIII-D shot #154971.

These profiles are discretized by their value at 65 equally
spaced radial points, leading to a 65-D data vector per
profile at time t .

2) Global plasma parameters, which characterize the over-
all plasma conditions. For instance, elongation and tri-
angularity are the parameters that describe the shape of
the plasma cross section. We also included global scalar
properties, such as the total plasma volume, inductance,
and average density.

3) Actuator settings, i.e., plasma and machine parameters,
that allow the operator a certain amount of control over
the plasma profiles.

The full list of signals used in this work is depicted
in Table I.

Fig. 7 provides an example of the time evolution of the
various profiles in one plasma discharge at DIII-D.

The input for the model is the plasma state at the current
time step, consisting of the measured profiles and global
plasma parameters. In addition, a “proposal” is given for the

value of the actuators at each of the four time steps (200 ms)
into the future and the algorithm predicts the change in each
of the profiles 200 ms (four time steps) into the future. This
200-ms prediction window was chosen based on the typical
energy confinement time (τE) at DIII-D, and was empirically
found to be a period over which the profiles change noticeably
while not so long that the future state cannot be reliably
predicted. However, in Section V, we also briefly study the
performance of the RC as a function of this prediction window.

All shots were sorted chronologically and split into 75%,
15%, and 10% for training, validation, and test sets. Therefore,
the first 2750 shots (ca. 132 000 data-points) are used for
training the models while the next 705 and 300 shots are
assigned to the validation and test sets, respectively. Each
signal is normalized by subtracting out the median value and
dividing by the interquartile range.

It is important to note that 1) the modification of the hard-
ware and control systems of DIII-D through years, intrinsically
leads to changes in some characteristics of the shots and 2) the
physicists usually experiment several shots in a row with the
same setup. These consecutive shots, thus, presumably share
similar characteristics.

V. EXPERIMENTAL RESULTS

We report the performance of the prediction model using
root mean squared errors (RMSEs), based on the difference
between the prediction of the model and the actual measure-
ment for each signal, and normalized by the standard deviation
of the actual data.

A. RC Hyperparameter Tuning

In Section III, we presented a perceptual under-
standing of the reservoir’s hyperparameters consisting of
(K in, K rec, αU , ρ, λ) along with bias and the reservoir size.
Setting up a suitable RC has been studied in detail in [22] for
the task of speech recognition. The empirical findings of that
work shows that there are simple and comprehensible rules that
allow to design a reservoir in a structured manner rather than a
naive and time-consuming grid search over all the parameters.

1) In order to optimize the hyperparameters, one can begin
with a rather small size reservoir.

2) The input and recurrent weight matrices (Win and Wrec)
can be very sparse. In particular, five to ten elements per
node are enough, regardless of the size of the reservoir
and the input feature vector.

3) ρ and αU together control the relative importance of the
inputs and recurrent neuron activation. Therefore, they
can be tuned based on prior knowledge on the relation
of these two activations (e.g., current input needs more
weight than the past information) or a plain grid search.

4) The leaking rate λ can be tuned based on the minimum
time (in scan steps) the reservoir output is expected to
remain constant, i.e., the size of memory needed for the
given task.

5) The last parameter to optimize is the size of the reservoir.
The maximum size of the reservoir depends on the

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

2636 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Fig. 8. RMSE on the validation set (a) as a function of the input scaling
factor αU and input connections sparsity K in and (b) as a function of spectral
radius ρ and recurrent connection sparsity K rec.

Fig. 9. Performance of the RC on the validation set as a function of
the different combinations of inputs. P, S, and A refer to profiles, scalar
parameters, and actuators, respectively. Flat Baseline assumes that the signal
at the intended future will be exactly the same as now.

quality and quantity of the training data, the hardware
limitations, and the acceptable processing time.

To optimize the input layer, we begin with a rather small
reservoir of 250 nodes supplied with profiles, parameters, and
actuators as inputs to predict the profiles. As a result, the input
at each time step is a vector of size N in = 335 (5 profiles
of 65 each + 6 parameters + 4 actuators) to predict all five
profiles (Nout = 325).

Fig. 8(a) shows the performance of an RC without recurrent
connections as a function of αU and K in. The results confirm
that the density of input connections is indeed not a bottleneck
as long as the input weight scale is chosen correctly. Also,
the linear relation of these parameters suggests that by chang-
ing one of them, the other one can be adjusted without sweep-
ing. Fig. 8(b) depicts the outcome of a similar experiment on
the recurrent weights. According to these results, 1) adding
recurrent connections improves the performance of the RC
and 2) a very sparse recurrent connection of only ten inputs
per neuron is enough to achieve the optimal performance.

In the next experiment we study the impact of each of the
three input categories (profiles, actuators, and scalar parame-
ters) on the performance of the RC model. According to Fig. 9,
although actuators and scalars fail to individually predict the
profiles, actuators play a more important role in contributing
to the current profiles to predict the future of the profiles.
Nevertheless, because the dimension of the input vector has
negligible impact on the processing complexity of RC, we feed
all the available inputs to RC.

Fig. 10. Sweeping λ to find the optimal leaking memory for the reservoir
shows that a marginal leakage (λ = 0.85) helps the model to better utilize
the past information for predicting the future.

Fig. 11. Performance of RC on the training and validation set as a function
of reservoir size (number of nodes). A medium-size reservoir of 1000 nodes
seems to be enough to capture the most information from the training set
without overfitting.

Fig. 10 presents the performance of an RC as a function
of λ, and it shows that a rather small leakage (λ = 0.85)
helps the reservoir to benefit from a short-term memory in
predicting the profiles.

The last hyperparameter to be optimized is the size of the
reservoir. According to Fig. 11, a reservoir of 200–1000 nodes
is the optimal configuration. The total number of trainable
parameters is in fact the size of Wout or (N res+1)×Nout . Given
that the proposed model is supposed to predict five profiles
of dimension 65 for each, the 1000-node RC has 325 325
parameters, which means that the overfitting starts to happen
only when there are three times more model parameters
compared to the training samples.

Although 200 ms has been empirically shown to be a
suitable window for plasma behavior monitoring, we also
investigate the performance of RC as a function of this
prediction window. In Fig. 12, we compare the proposed RC
model with two other references: 1) Flat Base: which assumes
that the signal at the intended future will be exactly the same
as now and 2) Lin Reg: which tries to predict the future
by applying linear regression directly on the input features,
i.e., bypassing the reservoir. This experiment shows that on
average the reservoir-based model performs relatively 30%
better than the Flat Baseline and also 15% better than the
simple linear regression model.

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

JALALVAND et al.: REAL-TIME AND ADAPTIVE RC WITH APPLICATION TO PROFILE PREDICTION IN FUSION PLASMA 2637

Fig. 12. RMSE of three models as a function of prediction window.
RC performs relatively 30% better than the Flat Baseline and also 15% better
than the simple linear regression model.

TABLE II

TIME COMPLEXITY AND ACTUAL TIMES (MEASURED ON AN INTEL

CORE I7-3770) FOR THE DIFFERENT STEPS OF THE FULL
TRAINING OF A RESERVOIR WITH 1000 NEURONS

USING 2750 SHOTS (132 000 DATA POINTS). ITEMS

TAGGED WITH (∗) CAN BE RUN IN PARALLEL

B. Training Time and Adaptation

An important asset of RC compared to state-of-the-art
(deep) neural networks is its easy and fast training procedure.
All the experiments in this work are conducted on a conven-
tional CPU Intel Core i7-3770.

Table II lists the time complexity of each of the training
steps as a function of data and reservoir size along with actual
times in seconds to train a 1000-node RC on the given training
dataset.

Collecting R and D (lines 2–17 of Algorithm 1) for the
whole training dataset only takes 45 s (160 ms per shot)
and training the output weights (line 19) is almost real-time
(80 ms).

This suggests that by storing and updating R and D, we can
almost instantly adapt the RC model at the end of each shot,
or even every few hundred milliseconds during a given shot.

Before investigating the adaptation ability of RC, we studied
how much of the existing training data is in fact enough for
prediction of the validation set. Therefore, we define three
scenarios for gradually increasing the size of the training
set and evaluating the trained model on the validation set
described in Section IV.

1) Oldest shots: the model is trained with ntr oldest shots
of the training set. Given the time difference between
the training and validation shots, the training set with
small ntr perhaps contain the least similar shots to the
validation set.

2) Newest shots: the model is trained with ntr most recent
shots in the training set. These are perhaps the most
similar shots to the validation set.

Fig. 13. Prediction performance of reservoir computing as a function of
the training set consisting of ntr oldest, newest, or random shots. The results
suggest that training the RC with the most recent 1000 shots is almost as
effective as training the RC with all 2750 available training shots.

Fig. 14. Comparing the performance of adapting RC on the validation
set using three approaches: batch adaptation, PerShot adaptation, and online
adaptation. The latter has been studied with adaptation frequencies of 2 Hz
(every 500 ms) and 5 Hz (every 200 ms).

Fig. 15. Sweeping γ to find the optimal adaptation rate on the validation
set. Although the optimal is rather high (γ = 0.98), discarding the previous
data (γ = 1) causes overfitting.

3) Random shots: all shots are shuffled and randomly
assigned to the training and validation set. The com-
parison of these scenarios should give an indication of
how many shots, and in which order, is optimal for a
pretrained RC.

In Fig. 13, we gradually increase the number of training
shots in these scenarios, retrain the model using (3), and
evaluate the performance of the model on the whole validation
set after each step. The comparison between the Newest and
Random scenarios shows that it is not necessary to train the

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

2638 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Fig. 16. Performance comparison of an RC only trained on the training data (pretrained), the same RC getting adapted to the test data (pretrained-adapted),
and an RC learning the task from scratch on the test shots. The actual shot numbers in the test set start at 176 522.

RC with a very long history of shots. In fact, the model trained
on the newest 1000 shots performs equally well as a model that
has been trained on the oldest 3000 shots. This is important
to avoid unnecessary complexity of the training procedure.
Furthermore, the random scenario confirms that it is indeed
redundant to train the model on all the available data. Only
a quarter of the available dataset contains almost all useful
information to train the prediction model.

To study the adaptation capability of RC, we first train the
model on the available training set and define three scenarios
to adapt the model to the new environment, which is the
validation set: 1) batch adaptation, in which the output weights
are updated only after every batch of ten shots; 2) PerShot
adaptation, in which the output weights are updated after every
shot of the validation set; and 3) online adaptation, in which
the model is adapted every 500 ms “during” the shot. In all
scenarios, Wout is pretrained by collecting R and D on the
training data. During the adaptation, Wout is updated gradually
by calculating RA and DA from the validation set and updating
R and D [see (5)].

In Fig. 14, we evaluate these approaches and compare
them with the nonadapted (pretrained) RC, as well as the
Flat Baseline. As one can expect, increasing the frequency of
adaptation improves the prediction performance of the model.

Fig. 15 presents the impact of the adaptation rate
[γ in (3)] on the performance of the model. Because the size
of the validation set is significantly smaller than the training
set, it is logical to observe that the optimal adaptation rate is
rather high (γ = 0.98). However, discarding the previous data
(γ = 1) results in overfitting.

Table III lists the total adaptation time and the number of
adaptations on the validation set for a 1000-node RC based
on the three aforementioned scenarios. The numbers show that
even the online adaptation, which is the most intense scenario,
can be accomplished fast enough on a conventional CPU.

In the aforementioned scenarios, we assumed that there is a
separated training dataset to pretrain the RC before evaluating
and adapting the model under the test conditions. However,
we also investigated how the RC would behave in case we
begin with a nontrained RC and adapt it to the test environment
as time evolves. Fig. 16 shows the performance of three RC,
namely, 1) pretrained: the model is trained on the training
set and evaluated on the test set; 2) pretrained-adapted: the

TABLE III

TIME AND NUMBER OF ADAPTATIONS FOR THREE SCENARIOS OF
ADAPTING A 1000-NODE RC TO A VALIDATION SET OF 705 SHOTS

model is pretrained on the training set and gets updated during
the test; 3) not-pretrained: the model is trained on the test
set gradually without any pretraining. This experiment shows
that the pretrained-adapted model outperforms the other two,
especially compared to the pretrained model toward the end
of the test. Second, the not-trained model starts with poor
prediction, as can be expected, but in the second half of the test
(after around 250 shots) it gets close to the pretrained-adapted
model and in some examples it even outperforms the pre-
trained model, which has been trained on 2 750 shots before
testing.

As an example of the prediction of the proposed model,
Fig. 17 depicts the five profiles in one particular shot
from the test set. For each profile and at each time step,
we show the average over its 65 channels of target value, along
with the predictions of the pretrained RC, PerShot, and the
Online adaptation. Although the pretrained RC fails to predict
the second half of the signals, which exhibits a significantly
different pattern compared to the first half, adapting the model
just before this shot slightly helps to improve the prediction.
On the contrary, adapting the model every 500 ms significantly
improves the prediction.

C. Comparing RC With CNN-LSTM

CNNs in combination with Long-Short Term Memory cells
have increasingly become popular approaches for many data
analysis tasks involving time series [8]. However, their com-
plex training procedure demands a large amount of training
data and time. Furthermore, these systems usually achieve
promising performance when the training data are rich and
large enough and testing environments share common prop-
erties with training. In this section, we compare RC with a

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

JALALVAND et al.: REAL-TIME AND ADAPTIVE RC WITH APPLICATION TO PROFILE PREDICTION IN FUSION PLASMA 2639

Fig. 17. Target and prediction of the spatial mean value of electron density
(ne), electron temperature (Te), toroidal rotation (�), field line pitch (ι), and
total pressure (P) for shot #176 796. Each data-point at time t is the spatial
average of the profile at that time.

well-configured CNN-LSTM framework1 in two scenarios:
1) when training and testing shots are randomly selected
from a pool of shots recorded between 2010 and 2018 and
2) when the test shots have significantly different character-
istics as they are collected from a different setup of tokamak
in 2019. Fig. 18 presents the performance of RC and long
short-term memory (LSTM) in these conditions. Although
LSTM achieves promising scores in the matched conditions,
it drastically fails on the newly recorded shots. The pretrained
RC shows the same behavior, which likely means that there
is a considerable difference between the new data and the
training set. However, the fast adaptation ability of RC leads
to 25% relative improvement. Although frequent adaptation
of the CNN-LSTM model is practically very expensive, for
the sake of completeness we also retrained this model on a

1This code is also publicly available, on GitHub (https://github.com/
jabbate7/plasma-profile-predictor)

Fig. 18. Comparison of RC and CNN-LSTM when training and testing are
from the same pool (collected in 2013–2018) and when the test shots are from
a different tokamak setup and different year (2019).

combination of the training set and a subset of the test sets.
As expected, the CNN-LSTM outperforms RC when it has
already seen examples of the test data during training.

As far as the computational complexity is concerned,
the training of the CNN-LSTM model took 5 h on one
NVIDIA V100 GPU and eight IBM POWER9 CPU cores
compared to 45 s for training the RC on a Core i7 CPU.

VI. CONCLUSION AND FUTURE WORK

Many complex machine-learning paradigms, such as deep
neural networks and CNNs, require large amount of data and
time to learn the task, hence, they are usually difficult to adapt
to the new conditions. We explored the potential of RC as an
interesting alternative for data analysis and prediction tasks
involving multidimensional time-series measured in complex
physical systems. In this respect, the main assets of RC are
their temporal information processing ability and yet very easy
and fast training procedure.

In this study, we addressed real-time profile prediction for
condition monitoring in fusion devices using RC. We laid
special emphasis on model training complexity and adaptation
under changing operational conditions, showing the possibility
to update the model in a very efficient and near real-time
fashion. In this particular setting, every adaptation takes only
100 ms, which, for instance, can be compared with the typical
suggested prediction time of about 200 ms for disruption
avoidance in tokamaks. We in fact plan to incorporate the
proposed model in the DIII-D tokamak control system to study
its application and adaptation in real world scenarios.

Moreover, we explored the main hyperparameters of RC
and studied their impact on the activation and memory of
the reservoir. For instance, our experiments showed that the
input and recurrent connections of the model can be very
sparse without compromising the model performance, which
is useful for model storage. We also showed that the training
of model can be accomplished in parallel. Thus, RC is suitable
for pattern recognition in big data.

As a follow up to this work, we plan to utilize larger
datasets covering a greater diversity of plasma conditions.
In particular, although usually this is not how fusion devices

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

2640 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

are operated, it would be extremely useful to obtain more data
from shots with semirandom changes to actuators during the
current flattop.

Furthermore, it would be interesting to investigate more
complex architectures of RC, such as multilayer models,
as well as more sophisticated topologies in connecting the
reservoir neurons. For instance, a more structured input to
reservoir connections would divide the reservoir neurons into
segments, where each area learns specific properties of the
patterns in the training data. This might lead to better under-
standing and control of the reservoir activation.

Finally and although in this article we focused on plasma
profile prediction as a use-case, we believe that our findings
can be easily generalized to other applications and across
several disciplines.

ACKNOWLEDGMENT

Part of the data analysis was performed using the OMFIT
integrated modeling framework.

DISCLAIMER

This report is prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES

[1] F. C. Schuller, “Disruptions in tokamaks,” Plasma Phys. Controlled
Fusion, vol. 37, no. 11A, pp. A135–A162, Nov. 1995. [Online]. Avail-
able: https://doi.org/10.1088%2F0741-3335%2F37%2F11a%2F009

[2] P. de Vries et al., “Survey of disruption causes at JET,” Nucl.
Fusion, vol. 51, no. 5, Apr. 2011, Art. no. 053018. [Online]. Available:
https://doi.org/10.1088%2F0029-5515%2F51%2F5%2F053018

[3] J. Hernandez, A. Vannucci, T. Tajima, Z. Lin, W. Horton, and S. McCool,
“Neural network prediction of some classes of tokamak disruptions,”
Nucl. Fusion, vol. 36, no. 8, p. 1009, 1996.

[4] D. Wroblewski, G. Jahns, and J. Leuer, “Tokamak disruption alarm based
on a neural network model of the high-beta limit,” Nucl. Fusion, vol. 37,
no. 6, p. 725, 1997.

[5] G. Pautasso et al., “Prediction and mitigation of disruptions in ASDEX
upgrade,” J. Nucl. Mater., vols. 290–293, pp. 1045–1051, Mar. 2001.

[6] C. G. Windsor, G. Pautasso, C. Tichmann, R. J. Buttery, and
T. C. Hender, “A cross-tokamak neural network disruption predictor for
the JET and ASDEX upgrade tokamaks,” Nucl. Fusion, vol. 45, no. 5,
p. 337, 2005.

[7] B. Cannas et al., “A prediction tool for real-time application in the
disruption protection system at JET,” Nucl. Fusion, vol. 47, no. 11,
p. 1559, 2007.

[8] J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, “Predicting disruptive
instabilities in controlled fusion plasmas through deep learning,” Nature,
vol. 568, no. 7753, pp. 526–531, Apr. 2019, doi: 10.1038/s41586-019-
1116-4.

[9] R. J. Buttery et al., “On the form of NTM onset scalings,” Nucl. Fusion,
vol. 44, p. 678, Apr. 2004.

[10] G. A. Rattá et al., “An advanced disruption predictor for JET tested
in a simulated real-time environment,” Nucl. Fusion, vol. 50, no. 2,
Feb. 2010, Art. no. 025005.

[11] J. Vega et al., “Results of the JET real-time disruption predictor in
the ITER-like wall campaigns,” Fusion Eng. Des., vol. 88, p. 1228,
Oct. 2013.

[12] Y. Zhang, G. Pautasso, O. Kardaun, G. Tardini, and X. D. Zhang, “Pre-
diction of disruptions on ASDEX upgrade using discriminant analysis,”
Nucl. Fusion, vol. 51, no. 6, Jun. 2011, Art. no. 063039.

[13] C. Rea et al., “Disruption prediction investigations using machine
learning tools on DIII-D and Alcator C-Mod,” Plasma Phys. Controlled
Fusion, vol. 60, no. 8, Aug. 2018, Art. no. 084004.

[14] K. Montes et al., “Machine learning for disruption warnings on Alcator
C-Mod, DIII-D, and EAST,” Nucl. Fusion, vol. 59, no. 9, Jul. 2019,
Art. no. 096015. [Online]. Available: https://doi.org/10.1088%2F1741-
4326%2Fab1df4

[15] Y. Fu et al., “Machine learning control for disruption and tearing mode
avoidance,” Phys. Plasmas, vol. 27, no. 2, Feb. 2020, Art. no. 022501,
doi: 10.1063/1.5125581.

[16] A. Murari, M. Lungaroni, M. Gelfusa, E. Peluso, and J. V. and, “Adaptive
learning for disruption prediction in non-stationary conditions,” Nucl.
Fusion, vol. 59, no. 8, Jul. 2019, Art. no. 086037. [Online]. Available:
https://doi.org/10.1088%2F1741-4326%2Fab1ecc

[17] A. Murari et al., “On the transfer of adaptive predictors between different
devices for both mitigation and prevention of disruptions,” Nucl. Fusion,
vol. 60, no. 5, May 2020, Art. no. 056003.

[18] K. D. Humbird, J. L. Peterson, B. K. Spears, and R. G. McClarren,
“Transfer learning to model inertial confinement fusion experiments,”
IEEE Trans. Plasma Sci., vol. 48, no. 1, pp. 61–70, Jan. 2020. [Online].
Available: https://ieeexplore.ieee.org/document/8932676/

[19] H. Jaeger, “Tutorial on training recurrent neural networks, covering
BPTT, RTRL, EKF and the ‘echo state network’ approach,” German Nat.
Res. Center Inf. Technol., Sankt Augustin, Germany, GMD Rep. 159,
2002.

[20] G. Tanaka et al., “Recent advances in physical reservoir
computing: A review,” Neural Netw., vol. 115, pp. 100–123,
Jul. 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0893608019300784

[21] C. Gallicchio and A. Micheli, “Richness of deep echo state network
dynamics,” in Advances in Computational Intelligence, I. Rojas, G. Joya,
and A. Catala, Eds. Cham, Switzerland: Springer, 2019, pp. 480–491.

[22] A. Jalalvand, F. Triefenbach, K. Demuynck, and J.-P. Martens, “Robust
continuous digit recognition using reservoir computing,” Comput.
Speech Lang., vol. 30, no. 1, pp. 135–158, Mar. 2015.

[23] M. Xu, P. Baraldi, S. Al-Dahidi, and E. Zio, “Fault prognostics by an
ensemble of echo state networks in presence of event based measure-
ments,” Eng. Appl. Artif. Intell., vol. 87, Jan. 2020, Art. no. 103346.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0952197619302854

[24] C. Gallicchio, A. Micheli, and L. Pedrelli, “Design of deep echo
state networks,” Neural Netw., vol. 108, pp. 33–47, Dec. 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608018302223

[25] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free predic-
tion of large spatiotemporally chaotic systems from data: A reservoir
computing approach,” Phys. Rev. Lett., vol. 120, no. 2, p. 10, Jan. 2018,
doi: 10.1103/PhysRevLett.120.024102.

[26] A. Jalalvand, B. Vandersmissen, W. De Neve, and E. Mannens, “Radar
signal processing for human identification by means of reservoir com-
puting networks,” in Proc. IEEE Radar Conf. (RadarConf), Apr. 2019,
pp. 1–6.

[27] A. Jalalvand, F. Triefenbach, and J.-P. Martens, “Continuous digit
recognition in noise: Reservoirs can do an excellent job!” in Proc. Annu.
Conf. Int. Speech Commun. Assoc., 2012, p. 644.

[28] M. Inubushi and S. Goto, “Transfer learning for nonlinear dynamics
and its application to fluid turbulence,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 102, no. 4, Oct. 2020,
Art. no. 043301, doi: 10.1103/PhysRevE.102.043301.

[29] H. Jaeger, “The echo state approach to analysing and training recurrent
neural networks—With an erratum note,” German Nat. Res. Center
Inf. Technol., Sankt Augustin, Germany, GMD Rep. 148, 2001.
[Online]. Available: http://www.faculty.jacobs-university.de/hjaeger/
pubs/EchoStatesTechRep.pdf

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1038/s41586-019-1116-4
http://dx.doi.org/10.1038/s41586-019-1116-4
http://dx.doi.org/10.1063/1.5125581
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1103/PhysRevE.102.043301

JALALVAND et al.: REAL-TIME AND ADAPTIVE RC WITH APPLICATION TO PROFILE PREDICTION IN FUSION PLASMA 2641

[30] A. Jalalvand, K. Demuynck, and J.-P. Martens, “Noise robust continuous
digit recognition with reservoir-based acoustic models,” in Proc. Int.
Symp. Intell. Signal Process. Commun. Syst., 2013, p. 99.

[31] D. Verstraeten, “Reservoir computing: Computation with dynamical
systems,” Ph.D. dissertation, Dept. Electron. Inf. Syst., Ghent Univ.,
Ghent, Belgium, 2009.

[32] C. M. Bishop, “Training with noise is equivalent to tikhonov regular-
ization,” Neural Comput., vol. 7, no. 1, pp. 108–116, Jan. 1995.

[33] D. W. Marquardt and R. D. Snee, “Ridge regression in practice,” Amer.
Statistician, vol. 29, no. 1, pp. 3–20, Feb. 1975.

[34] R. Penrose, “A generalized inverse for matrices,” Math. Proc. Cambridge
Phil. Soc., vol. 51, no. 3, pp. 406–413, Jul. 1955.

[35] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surveys, vol. 46,
no. 4, pp. 1–37, Apr. 2014, doi: 10.1145/2523813.

[36] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
Trans. Neural Netw., vol. 22, no. 1, pp. 131–144, Jan. 2011.

[37] T. Strauss, W. Wustlich, and R. Labahn, “Design strategies for weight
matrices of echo state networks,” Neural Comput., vol. 24, no. 12,
pp. 3246–3276, Dec. 2012, doi: 10.1162/NECO_a_00374.

[38] A. Griffith, A. Pomerance, and D. J. Gauthier, “Forecasting chaotic
systems with very low connectivity reservoir computers,” Chaos, Inter-
discipl. J. Nonlinear Sci., vol. 29, no. 12, Dec. 2019, Art. no. 123108.

[39] T. L. Carroll and L. M. Pecora, “Network structure effects in reservoir
computers,” Chaos, Interdiscipl. J. Nonlinear Sci., vol. 29, no. 8,
Aug. 2019, Art. no. 083130, doi: 10.1063/1.5097686.

[40] L. Appeltant et al., “Information processing using a single dynamical
node as complex system,” Nature Commun., vol. 2, no. 1, pp. 1–6,
Sep. 2011.

[41] C. Gallicchio, “Sparsity in reservoir computing neural networks,” in
Proc. Int. Conf. Innov. Intell. Syst. Appl., 2020, pp. 1–7.

[42] A. Jalalvand, W. D. Neve, R. V. de Walle, and J. P. Martens, “Towards
using reservoir computing networks for noise-robust image recognition,”
in Proc. Int. Joint Conf. Neural Netw., Jul. 2016, pp. 1666–1672.

[43] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.

[44] M. Lukoševičius, “A practical guide to applying echo state networks,”
in Neural Networks: Tricks of the Trade (Lecture Notes in Computer
Science), vol. 7700. Berlin, Germany: Springer, 2012, pp. 659–686.

[45] J. A. Stillerman, T. W. Fredian, K. A. Klare, and G. Manduchi,
“MDSplus data acquisition system,” Rev. Sci. Instrum., vol. 68, no. 1,
pp. 939–942, Jan. 1997.

[46] O. Meneghini et al., “Integrated modeling applications for toka-
mak experiments with OMFIT,” Nucl. Fusion, vol. 55, no. 8,
Aug. 2015, Art. no. 083008. [Online]. Available: http://iopscience.iop.
org/article/10.1088/0029-5515/55/8/083008/meta

Azarakhsh Jalalvand (Member, IEEE) is currently
a Senior Data Scientist at Ghent University, Ghent,
Belgium. His research focuses on data-driven dis-
covery research tracks including audio, visual, and
radar data analysis, as well as multisensor signal
processing for a variety of applications, such as
object recognition, surveillance, predictive mainte-
nance, and anomaly detection.

Mr. Jalalvand received the three-year Special Post-
doctoral Fellowship Award (UGent-BOF) in 2020 to
investigate data-driven models for condition moni-

toring and plasma control in the magnetic confinement devices to produce
controlled thermonuclear fusion power.

Joseph Abbate is currently a Graduate Student at
Princeton University, Princeton, NJ, USA, work-
ing on model-predictive control to help operators
achieve desirable plasma states in experimental
fusion reactors. He is involved in running campaigns
of real-time tests on the algorithm at the DIII-D
tokamak in San Diego, CA, USA.

Rory Conlin is currently a Graduate Student at
Princeton University, Princeton, NJ, USA, with a
background in mechanical engineering, physics, and
film studies. He is developing machine-learning
algorithms for data-driven control of fusion plas-
mas to predict and avoid instabilities and achieve
new confinement regimes. He has developed new
methods to streamline and automate the conversion
and deployment of such algorithms for real-time
applications. He is also working on new numerical
techniques for physics-based predictions of restive

instabilities in plasmas, and developing a new stellarator equilibrium code.

Geert Verdoolaege (Member, IEEE) is currently an
Associate Professor with the Department of Applied
Physics, Ghent University, Ghent, Belgium, where
he heads the research unit Nuclear Fusion. His
research activities comprise development of data
analysis techniques using methods from probability
theory, machine learning and information geometry,
and their application to nuclear fusion experiments.

Prof. Verdoolaege serves on the Editorial Board
of Entropy journal and is a member of the scien-
tific committees of several conferences and topical

groups on nuclear fusion and information science.

Egemen Kolemen is currently an Assistant Profes-
sor at Princeton University, Princeton, NJ, USA, and
the Andlinger Center for Energy and the Environ-
ment. His research focuses on the application of
dynamics and control theory to experimental plasma
physics, primarily to address the challenges of fusion
reactor design. He analyzes the dynamics of com-
plex plasma phenomena using applied mathematics
and control theory with the aim of designing and
implementing novel control techniques, which he
then uses to build real-time control systems from
the ground up.

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2024 at 21:27:50 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1162/NECO_a_00374
http://dx.doi.org/10.1063/1.5097686

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

